Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
1.
Arch Esp Urol ; 77(3): 284-291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38715170

RESUMO

BACKGROUND: The management of medication for patients undergoing urological surgery is a subject of ongoing controversy, especially in elucidating the effect of clinical pharmacists on medication rationality. This study aims to assess the influence of clinical pharmacist service on the utilization of antibacterial and hepatoprotective drugs in urological surgery patients during the perioperative period. METHODS: Patients undergoing urological surgery in our hospital from January 2020, to January 2023, were consecutively selected. The patients were divided into control group (routine procedure) and observation group (routine procedure + clinical pharmacist service). The baseline data were balanced by 1:1 propensity score matching (PSM). The t test and chi-square test were used to compare the drug use, adverse reactions, and hospitalization-related indicators between the two groups. RESULTS: A total of 292 patients were included, with 100 patients in each group after PSM. No significant difference was found in the baseline data between the two groups (p > 0.05). The rationality of drug use (drug type, administration time, course of treatment, and combination) in the observation group was significantly better than that in the control group (χ2 = 8.489, 10.607, 10.895, 10.666; p = 0.004, 0.001, 0.001, 0.001). The incidence of adverse reactions (6.00%) and postoperative complications (7.00%) was significantly lower (χ2 = 4.903, 5.531; p = 0.027, 0.019). The length of hospital stay and total cost were similar (p > 0.05). The use time and cost of antibacterial and hepatoprotective drugs in the observation group were lower than those in the control group (t = 2.935, 3.450, 3.243, 3.532; p = 0.004, 0.001, 0.001, 0.001). The types and rates of antibacterial and hepatoprotective drugs in the observation group were significantly lower than those in the control group (p < 0.05). CONCLUSIONS: Clinical pharmacist service can effectively improve the rationality of drug use in urological surgery patients and reduce adverse reactions and postoperative complications, hence its clinical promotion value.


Assuntos
Antibacterianos , Serviço de Farmácia Hospitalar , Humanos , Estudos Retrospectivos , Masculino , Feminino , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Pessoa de Meia-Idade , Idoso , Procedimentos Cirúrgicos Urológicos , Farmacêuticos , Assistência Perioperatória , Período Perioperatório , Unidade Hospitalar de Urologia
2.
Biomaterials ; 309: 122583, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38692148

RESUMO

The urgent need for antimicrobial agents to combat infections caused by multidrug-resistant bacteria facilitates the exploration of alternative strategies such as photosensitizer (PS)-mediated photoinactivation. However, increasing studies have discovered uncorrelated bactericidal activities among PSs possessing similar photodynamic and pathogen-targeted properties. To optimize the photodynamic therapy (PDT) against infections, we investigated three type-I PSs of D-π-A AIEgens TI, TBI, and TTI. The capacities of reactive oxygen species (ROS) generation of TI, TBI, and TTI did not align with their bactericidal activities. Despite exhibiting the lowest photodynamic efficiency, TI exhibited the highest activities against methicillin-resistant Staphylococcus aureus (MRSA) by impairing the anti-oxidative responses of bacteria. By comparison, TTI, characterized by the strongest ROS production, inactivated intracellular MRSA by potentiating the inflammatory response of macrophages. Unlike TI and TTI, TBI, despite possessing moderate photodynamic activities and inducing ROS accumulation in both MRSA and macrophages, did not exhibit any antibacterial activity. Therefore, relying on the disturbed anti-oxidative metabolism of pathogens or potentiated host immune responses, transient ROS bursts can effectively control bacterial infections. Our study reevaluates the contribution of photodynamic activities of PSs to bacterial elimination and provides new insights into discovering novel antibacterial targets and agents.

3.
J Med Life ; 17(1): 28-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38737667

RESUMO

This study assessed the efficacy of antimicrobial photodynamic therapy (PDT) using a 650 nm diode laser combined with methylene blue (MB) as a photosensitizer to inhibit the growth of Candida albicans (C. albicans). Oral samples were collected from 75 patients diagnosed with oral thrush. C. albicans was isolated and identified using traditional methods and the VITEK 2 YST system. Samples (n = 25) were divided into five groups: Group 1 (control, n = 5) consisted of C. albicans suspensions in saline; Group 2 (n = 5) treated with nystatin; Group 3 (n = 5) exposed to a 650 nm diode laser in continuous mode at 200 mW for 300 seconds; Group 4 (n = 5) treated with 650 nm laser and MB as a photosensitizer; Group 5 (n = 5) exposed to the laser in combination with nystatin. Statistical analysis using ANOVA, Dunnett's t-test (P = 0.05), and LSD (P = 0.001) revealed significant differences in C. albicans counts pre- and post-treatment. Group 5 showed the most significant reduction in C. albicans, followed by Group 4, while Groups 2 and 3 showed the least variation. The findings suggest that PDT using a 650 nm diode laser with methylene blue (in continuous mode at 200 mW for 300 seconds) effectively reduced the prevalence of C. albicans.


Assuntos
Candida albicans , Azul de Metileno , Fotoquimioterapia , Fármacos Fotossensibilizantes , Candida albicans/efeitos dos fármacos , Fotoquimioterapia/métodos , Humanos , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Lasers Semicondutores/uso terapêutico , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Nistatina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico
4.
Antibiotics (Basel) ; 13(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667018

RESUMO

OBJECTIVE: To evaluate the in vitro antimicrobial and antibiofilm properties and the immune modulatory activity of cannabidiol (CBD) and cannabigerol (CBG) on oral bacteria and periodontal ligament fibroblasts (PLF). METHODS: Cytotoxicity was assessed by propidium iodide flow cytometry on fibroblasts derived from the periodontal ligament. The minimum inhibitory concentration (MIC) of CBD and CBG for S. mutans and C. albicans and the metabolic activity of a subgingival 33-species biofilm under CBD and CBG treatments were determined. The Quantification of cytokines was performed using the LEGENDplex kit (BioLegend, Ref 740930, San Diego, CA, USA). RESULTS: CBD-treated cell viability was greater than 95%, and for CBG, it was higher than 88%. MIC for S. mutans with CBD was 20 µM, and 10 µM for CBG. For C. albicans, no inhibitory effect was observed. Multispecies biofilm metabolic activity was reduced by 50.38% with CBD at 125 µg/mL (p = 0.03) and 39.9% with CBG at 62 µg/mL (p = 0.023). CBD exposure at 500 µg/mL reduced the metabolic activity of the formed biofilm by 15.41%, but CBG did not have an effect. CBG at 10 µM caused considerable production of anti-inflammatory mediators such as TGF-ß and IL-4 at 12 h. CBD at 10 µM to 20 µM produced the highest amount of IFN-γ. CONCLUSION: Both CBG and CBD inhibit S. mutans; they also moderately lower the metabolic activity of multispecies biofilms that form; however, CBD had an effect on biofilms that had already developed. This, together with the production of anti-inflammatory mediators and the maintenance of the viability of mammalian cells from the oral cavity, make these substances promising for clinical use and should be taken into account for future studies.

5.
Antibiotics (Basel) ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38667032

RESUMO

We aimed to define a novel indicator for monitoring antimicrobial use specifically in the Emergency Department Observation Unit (EDOU) and to assess the long-term impact of an institutional education-based antimicrobial stewardship program (ASP) on the antimicrobial prescribing pattern and clinical outcomes in this setting. A quasi-experimental interrupted time-series study was performed from 2011 to 2022. An educational ASP was implemented at the EDOU in 2015. To estimate changes in antimicrobial use, we designed an indicator adjusted for patients at risk of antimicrobial prescribing: defined daily doses (DDDs) per 100 patients transferred from the Emergency Department to the Observation Unit (TOs) per quarter. The number of bloodstream infections (BSIs) and the crude all-cause 14-day mortality were assessed as clinical outcomes. Antimicrobial use showed a sustained reduction with a trend change of -1.17 DDD per 100 TO and a relative effect of -45.6% (CI95% -64.5 to -26.7), particularly relevant for meropenem and piperacillin-tazobactam, with relative effects of -80.4% (-115.0 to -45.7) and -67.9% (-93.9 to -41.9), respectively. The incidence density of all BSIs increased significantly during the ASP period, with a relative effect of 123.2% (41.3 to 284.7). The mortality rate remained low and stable throughout the study period, with an absolute effect of -0.7% (-16.0 to 14.7). The regular monitoring of antimicrobial use in the EDOU by using this new quantitative indicator was useful to demonstrate that an institutional education-based ASP successfully achieved a long-term reduction in overall antimicrobial use, with a low and steady BSI mortality rate.

6.
Nanomaterials (Basel) ; 14(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668165

RESUMO

Tellurium (Te) is the heaviest stable chalcogen and is a rare element in Earth's crust (one to five ppb). It was discovered in gold ore from mines in Kleinschlatten near the present-day city of Zlatna, Romania. Industrial and other applications of Te focus on its inorganic forms. Tellurium can be toxic to animals and humans at low doses. Chronic tellurium poisoning endangers the kidney, liver, and nervous system. However, Te can be effective against bacteria and is able to destroy cancer cells. Tellurium can also be used to develop redox modulators and enzyme inhibitors. Soluble salts that contain Te had a role as therapeutic and antimicrobial agents before the advent of antibiotics. The pharmaceutical use of Te is not widespread due to the narrow margin between beneficial and toxic doses, but there are differences between the measure of toxicity based on the Te form. Nano-tellurium (Te-NPs) has several applications: it can act as an adsorptive agent to remove pollutants, and it can be used in antibacterial coating, photo-catalysis for the degradation of dyes, and conductive electronic materials. Nano-sized Te particles are the most promising and can be produced in both chemical and biological ways. Safety assessments are essential to determine the potential risks and benefits of using Te compounds in various applications. Future challenges and directions in developing nano-materials, nano-alloys, and nano-structures based on Te are still open to debate.

7.
Vet Sci ; 11(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38668437

RESUMO

This study aimed to assess (a) the biofilm producer ability and antimicrobial resistance profiles of Staphylococcus (Staph.) aureus and Streptococcus (Strep.) uberis isolated from cows with clinical mastitis (CM) and subclinical mastitis (SCM), and (b) the association between biofilm producer ability and antimicrobial resistance. We isolated a total of 197 Staph. aureus strains (SCM = 111, CM = 86) and 119 Strep. uberis strains (SCM = 15, CM = 104) from milk samples obtained from 316 cows distributed in 24 dairy herds. Biofilm-forming ability was assessed using the microplate method, while antimicrobial susceptibility was determined using the disk diffusion method against 13 antimicrobials. Among the isolates examined, 57.3% of Staph. aureus and 53.8% of Strep. uberis exhibited the ability to produce biofilm, which was categorized as strong, moderate, or weak. In terms of antimicrobial susceptibility, Staph. aureus isolates displayed resistance to penicillin (92.9%), ampicillin (50.8%), and tetracycline (52.7%). Conversely, Strep. uberis isolates exhibited resistance to penicillin (80.6%), oxacillin (80.6%), and tetracycline (37.8%). However, no significant correlation was found between antimicrobial resistance patterns and biofilm formation ability among the isolates.

8.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612644

RESUMO

Antimicrobial peptides (AMPs), as immune effectors synthesized by a variety of organisms, not only constitute a robust defense mechanism against a broad spectrum of pathogens in the host but also show promising applications as effective antimicrobial agents. Notably, insects are significant reservoirs of natural AMPs. However, the complex array of variations in types, quantities, antimicrobial activities, and production pathways of AMPs, as well as evolution of AMPs across insect species, presents a significant challenge for immunity system understanding and AMP applications. This review covers insect AMP discoveries, classification, common properties, and mechanisms of action. Additionally, the types, quantities, and activities of immune-related AMPs in each model insect are also summarized. We conducted the first comprehensive investigation into the diversity, distribution, and evolution of 20 types of AMPs in model insects, employing phylogenetic analysis to describe their evolutionary relationships and shed light on conserved and distinctive AMP families. Furthermore, we summarize the regulatory pathways of AMP production through classical signaling pathways and additional pathways associated with Nitric Oxide, insulin-like signaling, and hormones. This review advances our understanding of AMPs as guardians in insect immunity systems and unlocks a gateway to insect AMP resources, facilitating the use of AMPs to address food safety concerns.


Assuntos
Peptídeos Antimicrobianos , Inocuidade dos Alimentos , Humanos , Animais , Filogenia , Insetos , Óxido Nítrico
9.
Arch Microbiol ; 206(5): 233, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662051

RESUMO

Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.


Assuntos
Antibacterianos , Bacteriocinas , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Humanos , Animais , Antibacterianos/farmacologia , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/genética , Microbiologia de Alimentos , Microbiota , Embalagem de Alimentos , Inocuidade dos Alimentos
10.
Acta Stomatol Croat ; 58(1): 2-17, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38562220

RESUMO

Objective: This study aimed to evaluate the biological effects of "proanthocyanidin" (PA), and "nisin" (Ni), on dental pulp stem cells (DPSCs) and LPS-induced DPSCs as well as their antimicrobial effects against S. aureus and E. coli. Materials and methods: After characterization of DPSCs, cytotoxicity of PA and Ni on DPSCs were evaluated using a water-soluble tetrazolium salt (WST-1). The cytokines and chemokines released by DPSCs and the expression levels of IL-6, IL-8, and TNF alpha were detected with human Cytokine Array C5 and enzyme-linked immunosorbent assay (ELISA), respectively. The antibacterial activities of PA and Ni were tested using the drop plate method. Results: PA at 75 µg/ml increased cell viability, decreased TNF-α expression of DPSCs, did not show any cytotoxic effects on LPS-induced DPSCs, and also showed a tendency to decrease TNF-α expression. PA at 75 µg/ml exhibited higher expressions of TIMP-2, OPG, IL-7, and IL-8 in LPS-induced DPSCs compared to DPSCs. Ni at 100 µg/ml decreased TNF-α expression in DPSCs with no cytotoxic effects. It provided increased cell viability and a downregulation trend of TNF-α expression in LPS-induced DPSCs. Both Ni and PA provided strong antibacterial effects against S. aureus. Ni at 200µg/ml had strong antibacterial effects against E. coli without affecting negatively the viability of both DPSCs and LPS-induced DPSCs and showed anti-inflammatory activity by decreasing TNF-α expression. PA provided strong antibacterial effects against E. coli at 200 µg/ml but affected DPSCs viability negatively. Conclusion: PA and Ni at specific concentrations exhibited immunomodulatory activity on DPSCs and LPS-induced DPSCs without any cytotoxic effects and strong antibacterial effects on S. aureus.

11.
J Dent ; 145: 104984, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583645

RESUMO

OBJECTIVES: To incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into denture base materials: heat-cured (HC) and 3D printed (3DP) resins, at concentrations of 2.5 %, 5 %, and 10 %; and to evaluate the antimicrobial activity in two multi-species biofilm: (1) Candida albicans, Candida glabrata, and Streptococcus mutans, (2) Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus, and the wettability. METHODS: The AgVO3 was added to the HC powder, and printed samples were coated with 3DP with AgVO3 incorporated. After biofilm formation, the antimicrobial activity was evaluated by colony forming units per milliliter (CFU/mL), metabolic activity, and epifluorescence microscopy. Wettability was assessed by the contact angles with water and artificial saliva. RESULTS: In biofilm (1), HC-5 % and HC-10 % showed activity against S. mutans, HC-10 % against C. glabrata, and HC-10 % and 3DP-10 % had higher CFU/mL of C. albicans. 3DP-5 % had lower metabolic activity than the 3DP control. In biofilm (2), HC-10 % reduced S. aureus and P. aeruginosa, and HC-5 %, 3DP-2.5 %, and 3DP-5 % reduced S. aureus. 3DP incorporated with AgVO3, HC-5 %, and HC-10 % reduced biofilm (2) metabolic activity. 3DP-5 % and 3DP-10 % increased wettability with water and saliva. CONCLUSION: HC-10 % was effective against C. glabrata, S. mutans, P. aeruginosa, and S. aureus, and HC-5 % reduced S. mutans and S. aureus. For 3DP, 2.5 % and 5 % reduced S. aureus. The incorporation of AgVO3 into both resins reduced the metabolic activity of biofilms but had no effect on C. albicans. The wettability of the 3DP with water and saliva increased with the addition of AgVO3. CLINICAL SIGNIFICANCE: The incorporation of silver vanadate into the denture base materials provides antimicrobial efficacy and can prevent the aggravation of oral and systemic diseases. The incorporation of nanomaterials into printed resins is challenging and the coating is an alternative to obtain the inner denture base with antimicrobial effect.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38564153

RESUMO

Biofilm formation by the pathogenic bacteria generates a serious threat to the public health as it can increase the virulence potential, resistance to drugs, and escape from the host immune response mechanisms. Among the environmental factors that influence the biofilm formation, there are only limited reports available on the role of antimicrobial agents. During the antimicrobial drug administration or application for any purpose, the microbial population can expect to get exposed to the sub-minimum inhibitory concentration (sub-MIC) of the drug which will have an unprecedented impact on microbial responses. Hence, the study has been conducted to investigate the effects of sub-MIC levels of zinc oxide nanoparticles (ZnO NPs) on the biofilm formation of Klebsiella pneumoniae and Staphylococcus aureus. Here, the selected bacteria were primarily screened for the biofilm formation by using the Congo red agar method, and their susceptibility to ZnO NPs was also evaluated. Quantitative difference in biofilm formation by the selected organisms in the presence of ZnO NPs at the sub-MIC level was further carried out by using the microtiter plate-crystal violet assay. Further, the samples were subjected to atomic force microscopy (AFM) analysis to evaluate the properties and pattern of the biofilm modulated under the experimental conditions used. From these, the organisms treated with sub-MIC levels of ZnO NPs were found to have enhanced biofilm formation when compared with the untreated sample. Also, no microbial growth could be observed for the samples treated with the minimum inhibitory concentration (MIC) of ZnO NPs. The results observed in the study provide key insights into the impact of nanomaterials on clinically important microorganisms which demands critical thinking on the antimicrobial use of nanomaterials.

13.
J Pharm Bioallied Sci ; 16(Suppl 1): S921-S923, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595519

RESUMO

Background: Endodontic treatment involves the removal of infected dental pulp and subsequent disinfection of the root canal system. The effectiveness of drug delivery systems in root canal disinfection is critical for successful treatment outcomes. This in vitro study explores the potential of nanoparticles as a novel drug delivery system for endodontic treatment. Materials and Methods: Nanoparticles were synthesized using a biocompatible polymer and loaded with an antimicrobial agent. A total of 60 extracted human teeth were prepared to create standardized root canal infections. The teeth were randomly divided into three experimental groups: (1) conventional irrigation, (2) nanoparticle irrigation, and (3) control (no irrigation). The root canals in each group were irrigated with their respective solutions for 5 minutes. After treatment, microbial samples were collected from the root canals and cultured for colony-forming unit (CFU) analysis. The depth of penetration of nanoparticles into dentinal tubules was assessed using scanning electron microscopy (SEM). Results: The conventional irrigation group showed a reduction in microbial load from an average of 7.8 × 10^5 CFU/mL (SD ± 1.2 × 10^5) to 3.4 × 10^4 CFU/mL (SD ± 7.9 × 10^3) (P < 0.001). In contrast, the nanoparticle irrigation group exhibited a more significant reduction, with a decrease in CFU to 1.2 × 10^3 CFU/mL (SD ± 4.2 × 10^2) (P < 0.001). SEM analysis revealed deep penetration of nanoparticles into dentinal tubules, reaching an average depth of 150 µm. Conclusion: Nanoparticles loaded with antimicrobial agents demonstrated superior efficacy in reducing microbial load within root canals compared to conventional irrigation. Their ability to penetrate dentinal tubules suggests their potential as an innovative drug delivery system for endodontic treatment. Further research and clinical trials are warranted to validate these promising in vitro results and assess the safety and efficacy of nanoparticles in clinical practice.

14.
ACS Appl Mater Interfaces ; 16(17): 21633-21642, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632674

RESUMO

Resistance to antibiotics and antimicrobial compounds is a significant problem for human and animal health globally. The development and introduction of new antimicrobial compounds are urgently needed, and copper oxide nanoparticles (CuO NPs) have found widespread application across various sectors including biomedicine, pharmacy, catalysis, cosmetics, and many others. What makes them particularly attractive is the possibility of their synthesis through biogenic routes. In this study, we synthesized biogenic green tea (GT, Camellia sinensis)-derived CuO NPs (GT CuO NPs) and examined their biophysical properties, in vitro toxicity for mammalian cells in culture, and then tested them against Neisseria gonorrhoeae, an exemplar Gram-negative bacterium from the World Health Organization's Priority Pathogen List. We compared our synthesized GT CuOP NPs with commercial CuO NPs (Com CuO NPs). Com CuO NPs were significantly more cytotoxic to mammalian cells (IC50 of 7.32 µg/mL) than GT CuO NPs (IC50 of 106.1 µg/mL). GT CuO NPs showed no significant increase in bax, bcl2, il6, and il1ß mRNA expression from mammalian cells, whereas there were notable rises after treatment with Com CuO NPs. GT-CuO NPs required concentrations of 0.625 and 3.125 µg/mL to kill 50 and 100% of bacteria, respectively, whereas Com-CuO NPs needed concentrations of 15.625 and 30 µg/mL to kill 50 and 100% of bacteria, and the antibiotic ceftriaxone killed 50 and 100% with 3.125 and 30 µg/mL. Gonococci could be killed within 30 min of exposure to GT CuO NPs and the NPs could kill up to 107 within 1 h. In summary, this is the first report to our knowledge that describes the bioactivity of biogenic CuO NPs against N. gonorrhoeae. Our data suggest that biogenic nanoparticle synthesis has significant advantages over traditional chemical routes of synthesis and highlights the potential of GT-CuO NPs in addressing the challenges posed by multidrug-resistant Neisseria gonorrhoeae infections.


Assuntos
Antibacterianos , Cobre , Nanopartículas Metálicas , Neisseria gonorrhoeae , Neisseria gonorrhoeae/efeitos dos fármacos , Humanos , Cobre/química , Cobre/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana
15.
BMC Pediatr ; 24(1): 177, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481225

RESUMO

The use of antimicrobials (AMs) in pediatric infections is common practice and use may be inappropriate leading to antimicrobial resistance. Off-label AM use is also common in this group and can result in drug-related problems. There is lack of DUR data in Brazil and in Latin America, specially for AM pediatric use. The aim of this study was to describe the utilization of AMs in hospitalized children in five hospitals in Brazil. We conducted an observational study of the utilization of AMs in pediatric wards in hospitals in the states of Ceará (CE), Sergipe (SE), Rio de Janeiro (RJ), Rio Grande do Sul (RS) and the Federal District (DF). Data derived from patient medical records and prescriptions were collected over a six-month period in each hospital. The number of AMs used by each patient was recorded, and AM use was assessed using Days of therapy (DOT) and Length of therapy (LOT) per 1000 patient days according to different patient characteristics. Off-label (OL) use was described according to age. The study analyzed data from 1020 patients. The sex and age distributions were similar across the five hospitals. However, differences were found for comorbidities, history of ICU admission and length of hospital stay. The most common diseases were respiratory tract infections. There were wide variations in DOT/1000PD (278-517) and LOT/1000PD (265-390). AM utilization was highest in the hospital in SE. The consumption of second-generation penicillins and cephalosporins was high. The prevalence of OL use of AMs was higher for patients in the RJ hospital, in infants, in patients who underwent prolonged hospital stays, and in patients who used multiple AMs. The AM that showed the highest prevalence of OL use was azithromycin, in both oral and parenteral formulations. Overall AM use was high and showed differences in each setting, possibly influenced by local characteristics and by prescribing standards adopted by pediatricians.


Assuntos
Anti-Infecciosos , Lactente , Criança , Humanos , Brasil , Hospitais , Hospitalização , Criança Hospitalizada , Antibacterianos/uso terapêutico , Hospitais Pediátricos
16.
Heliyon ; 10(6): e28037, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524621

RESUMO

Background: Autoimmune Poly-endocrine Syndrome Type 1 (APS-1), also known as autoimmune poly-endocrinopathy-candidiasis-ectodermal dystrophy (APECED), is a single-gene hereditary disorder usually characterized by chronic mucocutaneous candidiasis, hypoparathyroidism, and autoimmune adrenocortical insufficiency. This syndrome is very rare in China. Methods: For our reported patient, we employed clinical and laboratory examinations along with genetic identification. For previously reported cases, we summarized findings based on meta-analysis principles. To investigate the AIRE gene's role in disease, we utilized bioinformatics analysis with existing databases and R language processing. Results: Nucleotide sequence analysis revealed two novel homozygous missense mutations (c.74C > G; c.1612C > T) in the patient's AIRE gene, confirming APS-1 diagnosis. The 3D structure of these mutation sites was described for the first time, showing that altered side chains could affect AIRE protein function. We analyzed 16 genetically diagnosed APS-1 Chinese patients, summarized the AIRE genetic spectrum, and found that exons 1, 2, 3, and 5 were most commonly affected. Hypoparathyroidism and adrenal insufficiency were the most common clinical manifestations (56%-93%), followed by hypothyroidism (31.25%), hypogonadism (12.5%), type 2 diabetes (6.25%), and type 1 diabetes (6.25%). Bioinformatics analysis indicated that AIRE mutations cause antigen presentation abnormalities in immune cells, leading to excessive endogenous and reduced exogenous antigen presentation. Conclusions: Our study summarized the clinical features of APS-1 caused by AIRE gene mutations and explored underlying mechanisms. For some patients, the prophylactic use of antimicrobial agents may be beneficial. These findings guide early genetic screening and inform potential research directions for treatment strategies.

17.
Expert Opin Investig Drugs ; 33(4): 371-387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445383

RESUMO

INTRODUCTION: Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED: Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION: Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.


Assuntos
Anti-Infecciosos , Infecções por Bactérias Gram-Negativas , Humanos , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/microbiologia , Testes de Sensibilidade Microbiana , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto
18.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38467396

RESUMO

Endophytic microorganisms associated with medicinal plants are of particular interest as they are a potential source of new bioactive chemicals effective against novel emerging and drug-resistant pathogens. Agave americana is a tropical medicinal plant with antibacterial, antifungal, and anticancer properties. We studied the biodiversity of fungal endophytes of A. americana and their antimicrobial production potential. Isolated endophytic fungi were classified into 32 morphotypes (15 from stem and 17 from leaf) based on their cultural and morphological characteristics. Among the fungal crude extracts tested, 82% of isolates from the leaves and 80% of the isolates from the stem showed antibacterial activity against the bacterial strains (Escherichia coli ATTC 25902, Staphylococcus aureus ATTC 14775, and Bacillus subtilis NRRL 5109) tested. Extracts from four fungal isolates from leaves showed antifungal activity against at least one of the fungal strains (Candida albicans ATTC 10231 and Aspergillus fumigatus NRRL 5109) tested. Crude extracts of seven fungal isolates showed a zone of inhibition of more than 11 mm at 10 mgml-1 against both Gram-positive and Gram-negative bacteria tested. Penicillium, Colletotrichum, Curvularia, Pleosporales, Dothideomycetes, and Pleurotus are the main endophytes responsible for bioactive potential. These results indicate that A. americana harbors endophytes capable of producing antimicrobial metabolites.


Assuntos
Agave , Anti-Infecciosos , Ascomicetos , Plantas Medicinais , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Antibacterianos/farmacologia , Plantas Medicinais/microbiologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Bactérias Gram-Positivas , Fungos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Endófitos , Misturas Complexas/metabolismo , Misturas Complexas/farmacologia
19.
Heliyon ; 10(6): e28225, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545135

RESUMO

Geckos and their products have been used in Asian traditional medicine. Medicinal properties of desert-dwelling Gecko species, Crossobamon orientalis remain unexplored. In this study, natural bioactive macromolecules present in oil extracted from C. orientalis (COO) and their biological activities were evaluated. Chemical constitution of COO was explored by using gas chromatography mass spectrometry. Antioxidant, antiviral, and antibacterial activities of COO extracts were assessed using various assays, including DPPH free-radical-protocol, HET-CAM method, in ovo-antiviral technique, and disc-diffusion method. GC-MS study reported 40 different compounds in COO. n-hexane and methanol extracts of COO demonstrated highest DPPH radical inhibition, with values of 70 and 63.3%, respectively. Extracts of COO in solvents, namely 1-butanol, methanol, diethyl ether, and n-hexane significantly inhibited the proliferation of four pathogenic viruses. Maximum zone of inhibition was observed for Escherichia coli (13.65 ± 0.57 mm). These findings suggest that COO possesses potent antioxidant and antimicrobial properties against viral and bacterial strains, thanks to its biologically active components having no side effects. Further studies are essential to isolate and identify individual bioactive compounds present in COO and to investigate their potential as therapeutic agents.

20.
Synth Syst Biotechnol ; 9(2): 312-321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38545458

RESUMO

Acinetobacter baumannii is a pathogenic bacterium widespread in human environments, especially in intensive care units, and is associated with high morbidity and infection rates. Multiple drug resistance in A. baumannii frequently leads to the death of patients, making the development of multi-effect antibacterial agents against this bacterium a research hotspot. We have previously found that the X33 antimicrobial oligopeptide can effectively inhibit the growth of Penicillium digitatum and Candida albicans. Herein, we evaluated the antibacterial activity of X33 antimicrobial oligopeptide against A. baumannii by determining the minimum inhibitory concentration, inhibition zone, and growth curve. The increase in extracellular alkaline phosphatase and the leakage of intracellular compounds confirmed the effect of X33 antimicrobial oligopeptide on the cell wall and membrane. Changes in reactive oxygen species, malondialdehyde, ATP, reducing sugar, soluble protein, and pyruvate content demonstrated that the incubation with X33 antimicrobial oligopeptide affected energy metabolism and oxidative stress. Consistent with the physiological characteristics, transcriptomics analysis indicated that incubation with X33 antimicrobial oligopeptide significantly induced changes in the expression of 2339 genes, including 1262 upregulated and 1077 downregulated genes, which participate in oxidative phosphorylation, ribosome, quorum sensing, fatty acid degradation, glycolysis/gluconeogenesis, and citrate cycle pathways. These results provide a fundamental basis for investigating the mechanism of X33 antimicrobial oligopeptide as a potential drug against A. baumannii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...